

Hussmann

September 2011

Key Learning's

- Review of Refrigeration 101
- Basic understanding of more complex components of a refrigeration system
- Overview of more complex mechanical refrigeration systems
- Interaction of the mechanical system with the building
- Equipment planning and location

REFRIGERATION 101 REVIEW

Sensible Heat

HEAT ENERGY
British Thermal Unit (BTU)

British Thermal Unit (BTU)

Pressure / Temperature

Saturation

Superheat

Refrigeration Cycle

Vapor Compression Refrigeration Cycle

Enthalpy – measure of the heat energy of a substance.

SYSTEM MAJOR COMPONENTS OVERVIEW

E+SC

2011

Energy & Store Development Conference

Select the proper compressor for the appropriate application

Reciprocating Compressor

MEDIUM TEMP PRESSURES

- Moving pistons compress refrigerant gas within cylinders.
- On the downstroke, the suction inlet valve is open as low pressure gas refrigerant is drawn into the cylinder.
- When the piston begins its upstroke, the suction inlet valve is closed and pressure increases.
- High pressure gas exits through the discharge port .

Scroll Compressor

- Rotation is critical on scroll compressors.
- An orbiting scroll moves in a circular motion within a second, fixed scroll.
- The gas entering the low pressure inlet is pressurized into continuously smaller areas until it exits through the discharge line.

Screw Compressor

Intake: the vapor passes through the inlet and into the void which is wide open at the suction end.

Compression: as the rotors contrarotate, the inlet void closes, the volume is reduced and the pressure increases.

Discharge: compression is completed, final pressure achieved and the vapor is discharged.

Round Tube Plate Fin (RTPF) Air Cooled Condenser

- Coil comprised of:
 - copper tubes to transport refrigerant
 - aluminum fins to increase heat transfer capability
- Fans pull ambient air across coil section
- Heat is rejected to atmosphere
- Refrigerant changes from superheated vapor to sub-cooled liquid

MicroChannel Air Cooled Condenser

- Same operation as RTPF air cooled condenser
- Coil comprised of:
 - flattened aluminum tube with narrow channels
 - aluminum fins in between
- Reduced refrigerant charge
- Smaller size with less weight

Evaporative Cooled Condenser

- Copper tubes transport refrigerant through coil slab
- Ambient air blown over coils
- Water from a sump is sprayed over the coils to increase heat removal

- Allows the condensing temperature to approach the wet bulb (WB) temperature of the ambient air versus the dry bulb (DB) temperature, which is normally higher.
- Increases system efficiency

Dry Fluid Cooler / Plate-to-Plate Condenser

- Fan cooled coil assembly
- Draws ambient air across coil slab to remove heat from glycol mixture
- Glycol mixture used as condenser fluid for refrigeration system
- Refrigeration system uses heat exchanger (plate-toplate shown) to condense compressor discharge gas
 - Located near compressors

Hybrid Fluid Cooler / Condenser

- Uses RTPF coil or microchannel coil
- Equipped with pre-cooling pads to cool incoming ambient air with water that is distributed over the cooling pads

- Air is drawn through the cooling pads and the heat exchangers
- Increases system efficiency

Display Case Operation (DX)

Display Case Equipment

- Reduces the temperature of the air passing through it (sensible heat)
- Removes humidity (latent heat)
- Low pressure liquid refrigerant is boiled off into low pressure vapor
- Proper airflow though the evaporator coil is critical to its function
- Moisture from ambient air freezes on coil tubes. This frost or ice prevents proper air flow across the coil and air curtain velocities.
- Defrost is the removal of frost or ice from an evaporator coil
 - •Off time MT Coils
 - Electric LT / MT Coils
 - •Hot Gas LT / MT Coils
 - •Cool Gas LT / MT Coils
 - Warm Fluid MT Glycol Coils

Case Temperature Control

Thermostatic Expansion Valve (TXV)

Electronic Expansion Valve (EEV)

- Expansion Valve (EV)
 - Regulates refrigerant flow
 - Maintains superheat at the evaporator outlet

Mechanical EPR w/solenoid

Electronic EPR (EEPR)

- Evaporator Pressure Regulator (EPR)
 - Maintain accurate display case pressure and temperature
 - Allows multiple evaporator systems to operate at different temperatures when piped to a common suction group

SYSTEM TYPES

E+Sd

2011

Energy & Store Development Conference

DX Condensing Unit Equipment

DX Rack Equipment (Circuit Piping)

2011

DX Rack Equipment (Loop Piping)

2011

Distributed DX Equipment (Loop)

Low Temperature

Installed in:

- back hallways
- above walk-ins
- rooftops
- under racking
- etc

- ·low charge
- reduced leaks
- ·less copper
- energy efficient

Medium **Cold Gas** (≈55°F) **Temperature**

Secondary Glycol System Operation

2011

Secondary Glycol Equipment (Loop)

Secondary CO₂ System Operation

2011

* LT and MT

machine rooms

mezzanines

outside slab

rooftops

Installed in:

Cold Gas (≈55°F) Warm Liquid Wet (≈105°F) **Vapor** CO_2 (+20°F) Liquid CO, (+20°F)

Medium Temperature

Hot Gas

(≈250°F)

Low Temperature

Cascade CO₂ DX System Operation

2011

Cascade CO₂ DX Equipment

Installed in:

- machine rooms
- mezzanines
- outside slab
- rooftops

* Loop Piping Shown

Low Temperature

Ammonia (NH3) Primary System

Primary Refrigeration Enclosure

Primary Refrigeration Loop

- Typically used with secondary systems
 - Example range of operation (-60°F to +60°F)
- Displaces use of HFC's
- Can not be used with copper
- Use of water system for scrubbing in case of leak

SYSTEM & BUILDING INTERACTION

Water Heat Reclaim

Split Condenser

Split Condenser

- Condenser sized with two parallel coils (50% - 50%)
- In Winter operation, 50% of condenser is disabled
- Reduces capacity of condenser for proper system control in cold climates
- Controlled by ambient temp sensor
 - 25% 50% 50% split is also available

Heat Reclaim & Split Condenser

Condensers

 Enhances condenser performance

- Central point of equipment control and monitoring
- Increases equipment life and energy with logical control algorithms
- Allows equipment monitoring, alarming and optimization

2011

Suction groups

- Manages multiple compressor racks
- Optimizes compressor cycling and energy savings

Controller boards

- •Expandable I/O system
- Allows for multiple control and monitoring points

Refrigerant leak detectors

- Immediate notification when leak occurs
- Program multiple set points

Circuits/display cases

- •Flexible control options to choose from
- Supports multiples of cases and case types

Tools Used by Engineers / Designers

ANALYSIS & COMPARISONS

Energy & Store Development Conference

Energy Analysis

- Energy Efficiency Ratio (EER)
 - Btu/hour per watt
- Coefficient of Performance (COP)
 - Unitless
- The amount of cooling divided by the power needed to do the cooling
- A higher value is better
 - it means less energy is used to do a given amount of cooling
- EER and COP depend on many factors
 - · evaporating temperature
 - condensing temperature
 - size of condenser
 - type of compressor
 - etc

EER is heavily influenced by ambient temp:

Hot day

Cold day

Energy use is less than half on cold days

Ambient Temperature Bin Hours

Dry Bulb BIN Hour Comparison

Wet Bulb BIN Hour Comparison

Temperature (Deg F)

Energy & Store Development Conference

Technology Comparison

Approach	Central DX	Distributed DX	Distributed Glycol Secondary	Central Glycol Secondary	Liquid Recirc CO ₂	Cascade CO ₂
Equipment 1st Cost	Baseline					
Energy Efficiency	Baseline	4				4
Refrigerant Charge	Baseline	4	++	4	4	4
Total Cost of Ownership	Baseline	4				
Carbon Footprint	Baseline	4	4	4	4	4
Service and Complexity	Baseline	4			4	

Energy & Store Development Conference

2011

System Type	Possible Level Attainable
Distributed	Silver when air-cooled Gold when air-cooled with microchannel
Secondary Distributed	Gold when air-cooled condenser Platinum when water-cooled
MT Secondary Glycol	Silver with centralized LT DX Gold with other advanced LT
Secondary CO ₂	Gold when used for both LT & MT Loads
LT CO ₂ Cascade	Gold when combined with MT secondary glycol or secondary CO ₂ MT
MT Glycol Compact Chiller	Platinum when water cooled and combined with LT CO ₂

Application of any system type does not guarantee certification ability. Proper planning, equipment selection, application, placement, and refrigerant are required.

Risk Increases Significantly w/ Product Temp

•Salmonella

Listeria

•E Coli on Beef

•Note: Y axis is 1000's of colony forming units per gram. It only takes < 100 cells to cause illness

Thank you for your attention!

Questions?

Travis D. Lumpkin, PE

Director, Sustainability & Senior Product Leader Refrigeration Systems

Hussmann